Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 112(4): 1098-1111, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209488

RESUMO

To understand how grapevine sinks compete with each other during water stress and subsequent rehydration, carbon (C) allocation patterns in drought-rehydrated vines (REC) at the beginning of fruit ripening were compared with control vines maintained under drought (WS) or fully irrigated (WW). In the 30 days following rehydration, the quantity and distribution of newly fixed C between leaves, roots and fruits was evaluated through 13 CO2 pulse-labeling and stable isotope ratio mass spectrometry. REC plants diverted the same percentage of fixed C towards the berries as the WS plants, although the percentage was higher than that of WW plants. Net photosynthesis (measured simultaneously with root respiration in a multichamber system for analysis of gas exchange above- and below-ground) was approximately two-fold greater in REC compared to WS treatment, and comparable or even higher than in WW plants. Maximizing C assimilation and delivery in REC plants led to a significantly higher amount of newly fixed C compared to both control treatments, already 2 days after rehydration in root, and 2 days later in the berries, in line with the expression of genes responsible for sugar metabolism. In REC plants, the increase in C assimilation was able to support the requests of the sinks during fruit ripening, without affecting the reserves, as was the case in WS. These mechanisms clarify what is experienced in fruit crops, when occasional rain or irrigation events are more effective in determining sugar delivery towards fruits, rather than constant and satisfactory water availabilities.


Assuntos
Secas , Vitis , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Açúcares/metabolismo
2.
Plants (Basel) ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34834782

RESUMO

Information about the availability of soil mineral nitrogen (N) in organic greenhouse tomatoes after the application of mobile green manure (MGM), and its impact on plant nutrient status and yield is scarce. Considering this knowledge gap, the effects of legume biomass from faba beans that are cultivated outdoors (FAB), or from feed-grade alfalfa pellets at two different doses (AAL = 330 g m-2; AAH = 660 g m-2) that were applied as MGM on the nutrition and yield of an organic greenhouse crop of tomatoes were evaluated. All of the MGM treatments increased the mineral N concentrations in the soil throughout the cropping period, and the total N concentration in tomato leaves when compared to the untreated control. FAB and AAH treatments had a stronger impact than AAL in all of the measured parameters. In addition, AAL, AAH, and FAB treatments increased the yield compared to the control by 19%, 33%, and 36%, respectively. The application of MGM, either as faba bean fresh biomass or as alfalfa dry pellets, in organic greenhouse tomatoes significantly increased the plant available soil N, improved N nutrition, and enhanced the fruit yield. However, the N mineralization rates after the MGM application were excessive during the initial cropping stages, followed by a marked decrease thereafter. This may impose an N deficiency during the late cropping period.

3.
Data Brief ; 36: 107076, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34026974

RESUMO

To date urea and ammonium are two nitrogen (N) forms widely used in agriculture. Due to a low production cost, urea is the N form most applied in agriculture. However, its stability in the soil depends on the activity of microbial ureases, that operate the hydrolysis of urea into ammonium. In the soil ammonium is subjected to fast volatilization in form of ammonia, an environmental N loss that contributes to the atmospheric pollution and impacts on farm economies. Based on these considerations, the optimization of N fertilization is useful in order to maximize N acquired by crops and at the same time limit N losses in the environment. The use of mixed nitrogen forms in cultivated soils allows to have urea and ammonium simultaneously available for the root acquisition after a fertilization event. A combination of different N-sources is known to lead to positive effects on the nutritional status of crops. It is plausible suppose that N acquisition mechanisms in plants might be responsive to N forms available in the root external solution, and therefore indicate a cross connection among different N forms, such as urea and ammonium. This DIB article provides details about the elemental composition and transcriptional changes occurring in maize seedlings when ammonium and urea mixture is applied to nutrient solution. An extensive and complete characterization of seedling response to urea and ammonium treatments is shown in the research article "Characterization of physiological and molecular responses of Zea mays seedlings to different urea-ammonium ratios" Buoso et al. [1]. Maize seedlings were grown under hydroponic system with N applied to nutrient solution in form of urea and or ammonium, hence five different urea (U) to ammonium (A) ratios were tested (100U, 75U:25A, 50U:50A, 25U:75A, 100A). As control maize were fed with nitrate as sole N source, or were maintained in N deficiency (-N). After 1 or 7 days of N-treatment, maize seedlings were collected, and physiological and transcriptional analyses were performed on maize roots. Depending on nutritional treatment, no significant changes in seedling biomass were observed comparing N treatments. At both sampling times, an overall higher N accumulation in shoots and roots were detected when the inorganic N sources were applied to nutrient solutions (as ammonium or nitrate). 15N experiments indicated that in comparison to -N seedlings, urea fed seedlings showed an increase of N accumulation and data showed that ureic-N was taken up by seedlings in lower amounts than inorganic N-forms. Through EA-IRMS, ICP-OES and ICP-MS a multielemental composition of maize tissues was performed as well as gene expression analyses by Real-time RT-PCR that allowed to monitor the expression profile of genes most involved in urea and ammonium nutritional pathways.

4.
Plants (Basel) ; 10(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801466

RESUMO

An organic greenhouse crop of tomato was established in February following cultivation of cowpea (CP) or common bean (CB) for green pod production, or faba bean (FB) for green manuring. The vegetative residues of CP and CB were incorporated to the soil together with farmyard manure (FYM), prior to establishing the tomato crop. The FB plants were incorporated to the soil at anthesis together with either FYM or composted olive-mill waste (CO). Green manuring with FB resulted in higher soil mineral N levels during the subsequent tomato crop and higher tomato fruit yield when combined with FYM, compared to compost. The level of soil mineral N was the main restrictive factor for yield in organic greenhouse tomato. FB for green manuring as preceding crop to tomato increased significantly the level of soil mineral N and tomato yield compared to CB or CP aiming to produce green pods. The lowest tomato yield was obtained when the preceding crop was CB cultivated for green pod production. The soil mineral N was significantly higher when FYM was applied as base dressing compared with CO, despite the higher total N concentration in CO, pointing to slower mineralization rates of CO during tomato cultivation.

5.
Plant Physiol Biochem ; 162: 613-623, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33774466

RESUMO

Despite the wide use of urea and ammonium as N-fertilizers, no information is available about the proper ratio useful to maximize the efficiency of their acquisition by crops. Ionomic analyses of maize seedlings fed with five different mixes of urea and ammonium indicated that after 7 days of treatment, the elemental composition of plant tissues was more influenced by ammonium in the nutrient solution than by urea. Within 24 h, similar high affinity influx rates of ammonium were measured in ammonium-treated seedlings, independently from the amount of the cation present in the nutrient solution (from 0.5 to 2.0 mM N), and it was confirmed by the similar accumulation of 15N derived from ammonium source. After 7 days, some changes in ammonium acquisition occurred among treatments, with the highest ammonium uptake efficiency when the urea-to-ammonium ratio was 3:1. Gene expression analyses of enzymes and transporters involved in N nutrition highlight a preferential induction of the cytosolic N-assimilatory pathway (via GS, ASNS) when both urea and ammonium were supplied in conjunction, this response might explain the higher N-acquisition efficiency when both sources are applied. In conclusion, this study provides new insights on plant responses to mixes of N sources that maximize the N-uptake efficiency by crops and thus could allow to adapt agronomic practices in order to limit the economic and environmental impact of N-fertilization.


Assuntos
Compostos de Amônio , Zea mays , Fertilizantes , Nitrogênio , Raízes de Plantas , Plântula , Ureia
6.
Sci Total Environ ; 748: 141125, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798857

RESUMO

The Fe(II)-catalyzed transformation of ferrihydrite into highly crystalline forms may represent an important pathway for soil organic matter (SOM) destabilization under moderately reducing conditions. However, the link between redox-driven changes in soil Fe mineral composition and crystallinity and SOM chemical properties in the field remains elusive. We evaluated abiotic Fe(II)-catalyzed mineralogical transformation of Fe (oxyhydr)oxides in bulk soils and two particle-size SOM fractions, namely the fine silt plus clay (<20 µm, FSi + Cl) and fine sand (50-200 µm, FSa) fractions of an agricultural soil unamended or amended with biochar, compost, or the combination of both. After spiking with Fe(II) and incubating for 7 days under anoxic and sterile conditions at neutral pH, the FSa fractions (Fe(II):Fe (III) molar ratios ≈ 3.3) showed more significant ferrihydrite transformations with respect to FSi + Cl fractions (Fe(II):Fe (III) molar ratios ≈ 0.7), with the consequent production of well-ordered Fe oxides in most soils, particularly those unamended or amended with biochar alone. Nonetheless, poorly crystalline ferrihydrite still constituted about 45% of the FSi + Cl fractions of amended soils after reaction with Fe(II), which confirms that the higher SOM and clay mineral content in this fraction may possibly inhibit atom exchange between aqueous Fe(II) and the solid phase. Building on our knowledge of abiotic Fe(II)-catalyzed mineralogical changes, the suppression of ferrihydrite transformation in FSi + Cl fractions in amended soils could ultimately lead to a slower turnover of ferrihydrite, possibly preserving the carbon sequestration potential associated with this mineral. Conversely, in both bulk soils and FSa fractions, the extent to which mineral transformation occur seemed to be contingent on the quality of the amendment used.

7.
Environ Sci Technol ; 54(7): 3940-3950, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32182045

RESUMO

In flooded paddy soils, inorganic and methylated thioarsenates contribute substantially to arsenic speciation besides the much-better-investigated oxyarsenic species, and thioarsenate uptake into rice plants has recently been shown. To better understand their fate when soil redox conditions change, that is, from flooding to drainage to reflooding, batch incubations and unplanted microcosm experiments were conducted with two paddy soils covering redox potentials from EH -260 to +200 mV. Further, occurrence of thioarsenates in the oxygenated rice rhizosphere was investigated using planted rhizobox experiments. Soil flooding resulted in rapid formation of inorganic thioarsenates with a dominance of trithioarsenate. Maximum thiolation of inorganic oxyarsenic species was 57% at EH -130 mV and oxidation caused nearly complete dethiolation. Only monothioarsenate formed again upon reflooding and was the major inorganic thioarsenate detected in the rhizosphere. Maximum thiolation of mono- and dimethylated oxyarsenates was about 70% and 100%, respectively, below EH 0 mV. Dithiolated species dominated over monothiolated species below EH -100 mV. Among all thioarsenates, dimethylated monothioarsenate showed the least transformation upon prolonged oxidation. It also was the major thiolated arsenic species in the rhizosphere with concentrations comparable to its precursor dimethylated oxyarsenate, which is especially critical since dimethylated monothioarsenate is highly carcinogenic.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Oxirredução , Rizosfera , Solo
8.
Ecology ; 98(2): 433-446, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27859034

RESUMO

Maintaining multiple ecological functions ("multifunctionality") is crucial to sustain viable ecosystems. To date most studies on biodiversity-ecosystem functioning (BEF) have focused on single or few ecological functions and services. However, there is a critical need to evaluate how species and species assemblages affect multiple processes at the same time, and how these functions are interconnected. Dung beetles represent excellent model organisms because they are key contributors to several ecosystem functions. Using a novel method based on the application of 15 N-enriched dung in a mesocosm field experiment, we assessed the role of dung beetles in regulating multiple aspects of nutrient cycling in alpine pastures over appropriate spatial (up to a soil depth of 20 cm) and temporal (up to 1 yr after dung application) scales. 15 N isotope tracing allowed the evaluation of multiple interrelated ecosystem functions responsible for the cycling of dung-derived nitrogen (DDN) in the soil and vegetation. We also resolved the role of functional group identity and the importance of interactions among co-occurring species for sustaining multiple functions by focusing on two different dung beetle nesting strategies (tunnelers and dwellers). Species interactions were studied by contrasting mixed-species to single-species assemblages, and asking whether the former performed multiple functions better than the latter. Dung beetles influenced at least seven ecological functions by facilitating dung removal, transport of DDN into the soil, microbial ammonification and nitrification processes, uptake of DDN by plants, herbage growth, and changes in botanical composition. Tunnelers and dwellers were found to be similarly efficient for most functions, with differences based on the spatial and temporal scales over which the functions operated. Although mixed-species assemblages seemed to perform better than single-species, this outcome may be dependent on the context. Most importantly though, the different functions were found to be interconnected sequentially as reveled by analyzing 15 N content in dung, soil and vegetation. Taken together, our current findings offer strong support for the contention that the link between biodiversity and ecosystem functions should be examined not function by function, but in terms of understanding multiple functions and how they interact with each other.


Assuntos
Besouros/fisiologia , Ecossistema , Animais , Biodiversidade , Ecologia , Isótopos , Isótopos de Nitrogênio/análise
9.
J Contam Hydrol ; 173: 83-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25561428

RESUMO

Understanding the effect of soil redox conditions on contaminant dynamics is of significant importance for evaluating their lability, mobility and potential transfer to other environmental compartments. Under changing redox conditions, soil properties and constituents such as Fe and Mn (hydr)oxides and organic matter (OM) may influence the behavior of associated metallic elements (MEs). In this work, the redox-driven release and redistribution of Cu between different soil pools was studied in three soils having different contamination sources. This was achieved by subjecting soil columns to a series of alternating reducing and oxidizing cycles under non-limiting C conditions, and assessing their influence on soil pore water, leachate and solid phase composition. Results showed that, in all soils, alternating redox conditions led to an increase in the distribution of Cu in the more labile fractions, consequently enhancing its susceptibility to loss. This was generally linked to the redox-driven cycling of Fe, Mn and dissolved organic matter (DOM). In fact, results suggested that the reductive dissolution of Fe and Mn (hydr)oxides and subsequent reprecipitation as poorly-ordered phases under oxic conditions contributed to the release and mobilization of Cu and/or Cu-containing organometallic complexes. However, the behavior of Cu, as well as the mechanisms controlling Cu release and loss with redox cycling, was influenced by both soil properties (e.g. pH, contents of easily reducible Fe and Mn (hydr)oxides) and source of Cu contamination.


Assuntos
Cobre/química , Oxirredução , Poluentes do Solo/química , Solo/química , Fenômenos Químicos , Metais/química , Compostos Orgânicos , Água/química
10.
Chemosphere ; 73(8): 1292-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18768204

RESUMO

We determined the organic carbon released by roots of maize plants (Zea mays L.) when grown in soils amended with compost and its soluble fractions. In rhizobox systems, soil and roots are separated from the soil of a lower compartment by a nylon membrane. Treatments are applied to the upper compartment, while in the lower compartment luminescent biosensors measure the bioavailable organic carbon released by roots (rhizodeposition). The rhizobox-plants systems were amended with a compost (COM), its water extract (TEA), the hydrophobic (HoDOM) and hydrophilic (HiDOM) fractions of the dissolved organic matter (DOM) extracted from the compost. After root development, the lower untreated compartments were sampled and sliced into thin layers. The bioavailable organic carbon in each layer was assessed with the lux-marked biosensor Pseudomonas fluorescens 10586 pUCD607, and compared with total organic carbon (TOC) analyses. The TOC values ranged between 8.4 and 9.6 g kg(-1) and did not show any significant differences between bulk and rhizosphere soil samples in any treatment. Conversely, the biosensor detected significant differences in available C compounds for rhizosphere soils amended with various organic materials. Concentrations of available organic compounds in the first 2 mm of soil rhizosphere were 1.69 (control), 1.09 (COM), 2.87 (HiDOM), 4.73 (HoDOM) and 2.14 (TEA)micromol Cg(-1) soil g(-1) roots. The applied rhizobox-biosensor integrated method was successful in detecting and quantifying effects of organic amendments on organic carbon released by maize plant roots. This approach may become important in assessing the carbon cycle in agricultural soils and soil-atmosphere compartments.


Assuntos
Técnicas Biossensoriais/métodos , Carbono/metabolismo , Genes Reporter , Rizoma/metabolismo , Solo/análise , Zea mays/metabolismo , Carbono/análise , Compostos Orgânicos/análise , Compostos Orgânicos/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Solubilidade
11.
J Environ Qual ; 36(1): 254-61, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17215234

RESUMO

This research deals with the transformation of an anthropomorphous landfill covering composed of a fill soil mixed with mechanically separated municipal waste compost. The study site was a municipal landfill near Perugia, Italy. Throughout the years, waste disposal in the landfill was performed by burial in horizontal layers, each one representing a yearly disposal. The external front of the landfill thus represented the yearly disposal over a 10-yr period starting in 1993. Temporal changes in the anthropomorphous soil over this period were studied by examining and describing soil profiles, and by collecting and analyzing soil samples from the 1993, 1994, 1997, and 2001 disposals. The samples were subjected to a series of physical, chemical, and biochemical analyses. The results obtained suggest that over a 10-yr period the top layer gained a pedological structure (subangular blocky and/or crumb) giving rise to an A horizon. Improved soil structure was confirmed by an increase in macroporosity, particularly for pores larger than 50 microm, measured by image analysis of soil thin sections. Total extractable carbon showed an increase in the content of humic substances, evidenced by parameters of humification. Enzymatic activities in the A and C1 horizons were also indicative of soil evolution and may serve as a valid indicator for monitoring the evolution of anthropogenic soils containing municipal waste compost.


Assuntos
Resíduos Industriais , Eliminação de Resíduos , Itália , Solo
12.
Bioresour Technol ; 98(9): 1822-31, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16935491

RESUMO

Composting is the biochemical transformation of waste organic matter by microorganisms whose metabolism occurs in the water-soluble phase. Therefore, a study of the changes occurring in compost dissolved organic matter can be useful for assessing its stability and maturity. In light of the variety of parameters generally utilized to study composting processes, this work aims at identifying the major chemical processes that occur in solution and their influence on the attainment of stability and maturity with composting time. Compost stability, assessed by means of respirometric analysis which determined oxygen demand as a result of mineralization of the compost's organic matter, and compost maturity evaluated with Lepidium sativum L. seed bioassays, were found to be highly related to the nature and content of water-soluble organic matter. Moreover, fractionation of the water-extractable organic carbon showed that the ratio of hydrophobic to hydrophilic carbon increased to values greater than unity for stabilized compost. These results together with the analysis for non-cellulosic polysaccharides, phenolic compounds and organic nitrogen within the water extracts, confirmed the influence of solubilization, mineralization and organic matter transformation on the quality of the final compost.


Assuntos
Biodegradação Ambiental , Substâncias Húmicas/análise , Compostos Orgânicos/análise , Eliminação de Resíduos , Solo/análise , Bioensaio , Lepidium sativum/crescimento & desenvolvimento , Modelos Biológicos , Sementes/crescimento & desenvolvimento , Poluentes Químicos da Água/análise
13.
J Environ Qual ; 33(5): 1743-51, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15356234

RESUMO

The amendment of soil with compost may significantly influence the mobility and persistence of pesticides and thus affect their environmental fate. Factors like adsorption, kinetics, and rate of degradation of pesticides could be altered in amended soils. The aim of this study was to determine the effects of the addition of compost made from source-separated municipal waste and green waste, on the fate of triasulfuron [(2-(2-chloroethoxy)-N-[[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide], a sulfonylurea herbicide used in postemergence treatment of cereals. Two native soils with low organic matter content were used. A series of analyses was performed to evaluate the adsorption and degradation of the herbicide in soil and in solution after the addition of compost and compost-extracted organic fractions, namely humic acids (HA), fulvic acids (FA), and hydrophobic dissolved organic matter (HoDOM). Results have shown that the adsorption of triasulfuron to soil increases in the presence of compost, and that the HA and HoDOM fractions are mainly responsible for this increase. Hydrophobic dissolved organic matter applied to the soils underwent sorption reactions with the soils, and in the sorbed state, served to increase the adsorption capacity of the soil for triasulfuron. The rate of hydrolysis of triasulfuron in solution was significantly higher at acidic pH and the presence of organic matter fractions extracted from compost also slightly increased the rate of hydrolysis. The rate of degradation in amended and nonamended soils is explained by a two-stage degradation kinetics. During the initial phase, although triasulfuron degradation was rapid with a half-life of approximately 30 d, the presence of compost and HoDOM was found to slightly reduce the rate of degradation with respect to that in nonamended soil.


Assuntos
Eliminação de Resíduos , Poluentes do Solo/análise , Compostos de Sulfonilureia/análise , Adsorção , Cinética , Solo , Compostos de Sulfonilureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...